
w
w
w
.u
n
i -
s
tu
tt
g
a
rt
.d
e

A Comprehensive Safety
Engineering Approach for Software Intensive

Systems based on STPA

Asim Abdulkhaleq, Ph.D Candidate

3rd ESW2015, 5th October, Amsterdam, Netherlands

Institute of Software Technology
University of Stuttgart, Germany

Joint with:

Prof. Dr. Stefan Wagner

Prof. Dr. Nancy Leveson

©2015 UNIVERSITÄT Stuttgart| FAKULTÄT FÜR INFORMATIK, ELEKTROTECHNIK und INFORMATIONSTECHNIK | INSTITUT FÜR SOFTWARETECHNOLOGIE 1/20

STPA Safety Analysis

STPA-based
Approach

Motivation: Software of Today’s Complex Systems

 Today’s safety critical systems are increasingly reliant on software.

 Software is the most complex part of modern safety critical embedded systems.

 E.g. A modern BMW 7 car has something close to 100 million lines of software code
in it, running on 70 to 100 microprocessors (Prof. Manfred Broy, TU München)

Anti-Lock Braking Systems (ABS)

Electronic Stability Control

Adaptive Cruise Control (ACC)

Stop & Go Adaptive Cruise Control

Traction Control
Back Camera

Tire Pressure Monitoring

Reverse Backup Sensors

Automatic Braking Systems

Electronic Brakeforce Distribution Systems

Automatic Braking Systems

2/20

How to develop a safe software (or achieve an acceptable
level of safety of software)?

Modern
Vehicle

Agenda

 Motivation

 Introduction

 Problem Statement

 Research Objectives

 Contribution

 A Comprehensive Safety Engineering Approach based on STPA

 Illustrative Example: Adaptive Cruise Control System

 Conclusion & Future Work

3/20

Problem Statement

4/20

 Problem Statement

 Safety is a system property and needs to be analysed in a system context.

 As software is a part of system, software safety must be considered in the context
of the system level to ensure the whole system's safety.

Software
Safety

Verify the software
against its safety

requirements

Identify appropriate
software safety
requirements

System Safety

 Safety Analysis Techniques:
• FTA, FMEA, STPA

 Software Verification approaches:
• Model checking (SMV, SPIN, .etc.)
• Testing approaches

FTA and FMEA have limitations to
cope with complex systems. STPA
is developed to cope with complex
systems, but its subject is system
not software
STPA is performed separately
STPA is not Placed into software
development process

Functional correctness of software,
however, even perfectly correct
software can contribute in an accident.
Not directly concern safety
Some limited in practices
Achieving 100% testing is impossible.

Research Objectives & Contribution

 Research Objectives

 Integrate STPA safety activities in a software engineering process to allow safety and
software engineers a seamless safety analysis and verification.

 This will help them to derive software safety requirements, verify them, generate
safety-based test case and execute them to recognize the associated software risks.

5/20

 Contribution

We contribute a safety engineering approach to derive software safety
requirements at the system level and verify them at the design and
implementation levels.

A comprehensive Software Engineering based on STPA

6/20

 Overview of the proposed approach:

1 Deriving software safety Requirements at the system level

Constructing the safe behaviour model of the software controller2

3 Verifying the safe behaviour model against the STPA results

4 Generating & executing the safety-based test cases based on STPA results

 Four main activities & roles

Safety Analyst

Safety Analyst & System Designer

Test Engineer

Safety Analyst & Test Engineer

build

Detailed View of the Proposed Approach

7/20

 The proposed approach can be applied during developing a new safe software
or on existing software of safety-critical system

Apply to software

at the system level

Safety Control

Structure Diagram
STPA Safety Analysis

Unsafe Software

Scenarios

Software Safety

Requirements

System Requirement

Specifications

System Design

Models

Software Implementation

(code)

Build Safe Software

Behaviour Model

Formal Verification

(model checker)

Testing approach

State machine model

Safety-based Test

Case Generation

Generate and

Execute Test-scripts

generate

generate test suites

Formalize

generate

Traceability Execute

*Extract the verification

model directly from the

software code

STPA results

Software Safety Verification

1

23

4

5

Safety Verification

Report

Formal

Specifications

Example: Adaptive Cruise Control System

8/20

 Adaptive Cruise Control System: is a well-known automotive system which has
strong safety requirements. ACC adapts the vehicle’s speed to traffic environment based
on a long range forward-radar sensor which is attached to the front of vehicle.

How to derive the safety
requirements of ACC software
controller at the system level

and generate the safety-based
test cases?

 Fundamentals of Analysis

 System-Level Accidents:

 ACC-1 : ACC vehicle crashes with front vehicle while ACC status is active.

 System-Level Hazards

 H-1: ACC software does not maintain safe distance from front vehicle.

Step1.a : Deriving the software Safety Requirements

9/20

 Control Structure diagram

ACC

Software Safety Requirements

SSR1.1 The ACC software controller should provide an acceleration signal when the
target vehicle is no longer in the lane

SSR.1.2 The ACC software controller decelerates the speed when the distance to the
target vehicle is too close.

SSR1.3 The ACC software controller should not provide the acceleration signal speed
when a safe distance is reached

Step 1.b: Identify Unsafe Scenarios of Software

10/20

 Control Structure Diagram & process model : shows the main interconnecting
components of the ACC system at a high level.

ACC

Three types of process
model variables:
(1) Internal variables
(2) Interaction variables
(3) Environmental variables

The total number of all variables combination: 3 x 2 x 2 x 2 x 4 x 4 = 384.

Extended Approach to STPA

 Extended Approach to STPA : John Thomas proposed an extended approach to STPA.

 It aims to refine the identified unsafe control actions in the STPA Step 1 based on
the combination of process model variables.

11/20

How to automatically generate
the combinations and minimize
the number of combination of
large complex system ?

I proposed to use the principle
of t-way combinatorial testing

algorithm

CIT is testing technique that requires covering all t-sized tuples of

values out of n parameter attributes of a system under test.

 Limitations for complex software controllers:

 The difficulty is in defining the combination for large number of values of the
process model variables which have affect on the safety of the control actions.

 Considering all combinations involves more effort and time.

Step1 : Automatically Generating Context Tables

12/20

 Apply the combinatorial testing algorithm to reduce the number of
combination between the process model variables (Cooperation with Rick Kuhn,
National Institute of Standards and Technology, Computer Security Division, US).

ACC

 By combinatorial testing algorithm:

 We can automatically generate the context table.

 We can achieve different combination coverages (e.g. pairwise coverage = 16
combinations, 3-way coverage = 48 combinations)

 We can apply different roles and constraints to the combination to ignore some
values

Test Case# followDistance cruiseSpeed BrakePedal ACCMode

0 current distance < safe distance current speed ==desired speed Not applied Follow

1 current distance < safe distance current speed < desired speed applied Standby

2 current distance < safe distance current speed > desired speed Not applied Cruise

3 current distance < safe distance Unknown applied Follow

4 current distance > safe distance current speed ==desired speed Not applied Standby

5 current distance > safe distance current speed < desired speed applied Cruise

6 current distance > safe distance current speed > desired speed applied Follow

7 current distance > safe distance Unknown Not applied Standby

8 current distance <=safe distance current speed ==desired speed applied Cruise

9 current distance <=safe distance current speed < desired speed Not applied Follow

10 current distance <=safe distance current speed > desired speed Not applied Standby

11 current distance <=safe distance Unknown Not applied Cruise

12 Unknown current speed ==desired speed applied Follow

13 Unknown current speed < desired speed Not applied Standby

14 Unknown current speed > desired speed applied Cruise

15 Unknown Unknown Not applied Standby

Examples of the Context Table

13/20

 ACC software controller provides a safety critical action: accelerate signal

Control
actions

Process Model variables Hazardous

Accelerate
Signal

Distance Speed Brake ACC Mode

< safe distance == desired speed Applied Cruise No

< safe distance >desired speed* Notapplied Cruise Yes (H2,
SSR3-4)

< safe distance > Desired speed Notapplied follow Yes (H1,
SSR1)

Refine the software safety Requirements

𝑆𝑆𝑅1.3: ACC should not provide accelerated signal when the distance is less or
equal the safe distance while ACC in cruise mode and brake pedal is not pressed.

Generate LTL formula

𝐿𝑇𝐿1.3 : G(distance <= safe distance &&
ACCController == cruise && brakepedal != Pressed)
!(accelerationSignal)

Step 2 : Constructing the safe behaviour model of software controller

14/20

Software safety requirements

Context tables

 To verify the design & implementation of software controller against the
STPA results and generate the safety-based test cases:

 Each software controller must be modelled in a suitable behaviour model

 The model should be constrained by STPA safety requirements

Control structure & process model

A safe behaviour model of software controller
Software Specification

UML state flow notation

 Syntax of each transition of the safe behaiovur model:

STPA Results

State 0
Event[STPA safety requirement]/Action

State 1

Step 2 : The safe behaviour model of ACC software controller

15/20

Software Controller & process model variables

[currentSpeed < desiredSpeed &&
currentDistance > safeDistance && !
BrakePressed & ACCMode == Cruise]

Transition t6: (safety requirement)

A safe behaviour model of ACC software Controller

Sequential Process variables

Parallel Process variables

Context Table

STPA Results

Step 3.1 : Verification of Safe behaviour model

16/20

 To ensure that the safe behaviour model satisfy the STPA safety requirements,
We convert the model into a input language of model checker such as SMV (Symbolic
Model Verifier) model

MODULE main ()
VAR
RadarData :{unknown, received}
BrakePedal :{notPressed, pressed}
ACC_Activated: {on, off}
ACCMode:{standby, cruise, follow}
Control_actions :{accelerate, decelerate}
ACC_Controller:{radardata, ACCMode,speedData}
controlaction: {toCruise, toaccelerate, todecelerate, tofollow, tosetSpeed}
currentspeed : {0, 25, 45, 65, 100}
dersiredspeed: {25,45, 75, 200}
safedistance: {65}
Ignited : boolean;
…
init(ACController) := initial;
init (event) :=default;
next(ACController) := case

ACCController=Off & (Ignited=off): Off;
ACCController=Off & (Ignited=on & BrakePressed=NotApplied): Initial;
ACCController=Initial & (Ignited =off | BrakePressed=Applied): Off;
ACCController=Initial & (BrakePressed=NotApplied &(CurrentSpeed<25): Standby;

Step 3.1 : Verification of Safe behaviour against STPA SSR

17/20

 We ran the NuSMV 2.5.3 model checking tool on a Windows 7 PC, i7 CPU with
2.80 GHZ, 8 GB main memory.

 The NuSMV tool verified the SMV model against the LTL formulae

 The SMV model satisfied all the identified STPA software safety requirements and no
counterexample generated (itself is built using STPA results)

Model

Formulae

NuSMV
Tool

Satisfied

Not satisfied (Counterexample)

Step 3.2 : Safety-based Test Cases Generating & Execution

18/20

 To generate safety-based test cases based on STPA results,

 We build a Java test generator based on the safe behaviour model.

 We use the Java test generator as input to the model-based testing tool e.g ModelJUnit.

Safety-based Test Cases ModelJunit
Tool

Safe behaviour model
Traceability matrix

Java Test Generator

public class ACC_TestCodeGenerator implements FsmModel {
…
public boolean cruiseGuard() {

return (currentState == State.Standby && ignited == true && currentSpeed > 25 && !isBrakePressd);
}

public @Action void tocruise() {
printTestInputData();
currentState = State.Cruise; accelerating();
if (isBrakePressd)
isBrakePressd = false;

}

public boolean standbyGuard() {
return (currentState == State.Standby && ignited == true && currentSpeed < 25 && !isBrakePressd);
}

public @Action void tostandby() {
printTestInputData();
currentState = State.Standby;
move();

…

Standby Cruise
tostandby[cruiseGuard()]/tocruise

The Results of Test Cases Generating & Demo

19/20

 We generated automatically 487 test cases which cover the safe behaviour of the
ACC software controller with the action coverage =15/18, state coverage =6/6,
transition coverage =15/15, and the pair transition coverage 36/36.

STPA & Traceability Matrix

 We created a Java code to generate the traceability matrix between the
generated test cases and STPA results and export them as an Excel sheet.

 We calculated the coverage of STPA software safety requirements

#Coverage(SSRs)=
#𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝑻𝑷𝑨 𝒔𝒂𝒇𝒆𝒕𝒚 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒎𝒏𝒕𝒔 𝒄𝒐𝒗𝒆𝒓𝒆𝒅 𝒊𝒏𝒕𝒐 𝒕𝒆𝒔𝒕 𝒄𝒂𝒔𝒆𝒔

#𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑺𝑻𝑷𝑨 𝒔𝒂𝒇𝒆𝒕𝒚 𝒓𝒆𝒒𝒖𝒓𝒊𝒆𝒎𝒆𝒏𝒕𝒔

 We calculated the average of each STPA software safety requirement and
each control action of each software controller

#Average(SSR)=
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒆𝒔𝒕 𝒄𝒂𝒔𝒆𝒔 𝒘𝒉𝒊𝒄𝒉 𝒄𝒐𝒏𝒂𝒕𝒊𝒏 𝑺𝑺𝑹

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒆𝒔𝒕 𝒄𝒂𝒔𝒆𝒔

 For example: The average of the software safety requirement (SSR1.3) and
control action “providing accelerate signal” are:

#Average(SSR1.3)=
17

197
= ~ 10% #Average(CA1)=

21

197
= ~ 11%

Syntax of transition = Event[STPA safety requirement]/Control Action

#Coverage(SSRs)=
𝟐𝟏

𝟐𝟏
= 𝟏𝟎𝟎%

#Average(CA)=
𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒆𝒔𝒕 𝒄𝒂𝒔𝒆𝒔 𝒘𝒉𝒊𝒄𝒉 𝒄𝒐𝒏𝒂𝒕𝒊𝒏 𝑪𝑨

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒕𝒆𝒔𝒕 𝒄𝒂𝒔𝒆𝒔

Conclusion & Future Work

20/20

 Conclusion:

 We presented a safety engineering approach based on STPA to develop a safe
software. It can be integrated into a software development process or applied
directly on existing software.

 It allows the software and safety engineers to work together during development
process of software for safety-critical systems.

 Limitations

 The main steps of approach require manual intervention

 The difficulty of using formal testing and verification in practice and using formal
approaches require some programming knowledge of the software.

 Future (recent) Work:

 We plan to develop a plug-in tool called STPA-verifier which will be integrated with
our expansible platform XSTAMPP to enable safety analyst performing STPA and
verifying the STPA results with SPIN.

 We conducted two case studies: the first case study conducted with our industrial
partner to investigate the effectiveness of applying the proposed methodology .

 The second case study conducted during developing a simulator of ACC with LEGO-
mindstorm roboter

The End

Thank You
Questions and Feedback are welcome!

