

Fallback Strategy for Automated Driving using STPA

Dr. Thomas Raste, Hagen Böhmert, Ali Houry 3rd European STAMP Workshop, Amsterdam, October 6, 2015

Chassis & Safety Division

Agenda

1 Automated Driving

- 2 Road and Product Safety
- **3** Functional Safety Process

4 STAMP/STPA Results

Strategies and Levels of Driving Automation

Automated Driving Building Blocks

- Use case: Highway Chauffeur
- AD Function calculates target trajectory
- MC provides trajectory tracking control
- Initial faults are tolerated
- Driver finally takes over or vehicle stops

🙆 ntinental 🏂

Chassis & Safety Division, Systems & Technology Confidential 7 October 2015 Dr. Thomas Raste, © Continental AG

Redundancy for Automated Driving (Example)

🙆 ntinental 🏂

Minimal Risk Condition as Fallback Strategy

a) System provides standstill in the ego lane

b) System provides standstill in service or rightmost lane

Fallback Strategy Testing

Chassis & Safety Division, Systems & Technology Confidential 7 October 2015 Dr. Thomas Raste, © Continental AG

Socio-Technical System for Road Safety

Dynamic process

- Determines normative safety (control action) in a complex feedback loop
- Ideally all three safety levels (normative, real, nominal) are equal
- Unstable, if real safety is accepted to be normative safety (positive feedback)

Schnieder, E.; Schnieder, L.: Verkehrssicherheit (Road Safety, in German). Springer Vieweg, Berlin, 2013

Road Safety Goals

Relative Goals: At least the same or increased safety level over time **Absolute Goals:** Socially accepted reference values for risk level

Schnieder, E.; Schnieder, L.: Verkehrssicherheit (Road Safety, in German). Springer Vieweg, Berlin, 2013

Chassis & Safety Division, Systems & Technology Confidential 7 October 2015 Dr. Thomas Raste, © Continental AG

Automotive Product Safety

System Theoretic Process Analysis (STPA)

- Define and describe the system
 - > ISO 26262 Item definition
 - > STPA Control Structure
- > Hazard and risk analysis
 - > ISO 26262 Hazard and risk analysis
 - STPA Hazard Analysis and identify unsafe control actions
- Functional Safety Concept
 - ISO 26262 Derive safety requirements from the safety goals and allocate them to the system
 - STPA Design safety into the system (eliminate or control potential unsafe control actions)

STPA Control Structure and Hazards

 Identify the hazards with the hazard and risk analysis (ISO 26262 Part 3)

Create the control structure

Chassis & Safety Division, Systems & Technology Confidential **Safety Goal**

mode.

The autopilot shall avoid

unintended steering requests during manual

ID

SG-01

ASIL

ASIL D

STPA Unsafe Control Actions

Identify unsafe control action and map to hazards

Control Action	Action required but not provided		Unsafe action provided		Incorrect Timing/Order		Stopped too soon /Applied too long	
	Description	Safety Goal	Description	Safety Goal	Description	Safety Goal	Description	Safety Goal
Steering Command from autopilot fallback strategy to Steering	UCA01 Vehicle does not steer while following safety path trajectory and lateral movement is required	SG-02 ASIL D	UCA02 Vehicle steers, but following safety path trajectory and lateral movement is not required	SG-01 ASIL D	UCA03 Vehicle steers too early while following safety path trajectory and lateral movement is required	SG-03 ASIL D	UCA05 Vehicle stop to steer while following safety path trajectory and lateral movement is required	SG-03 ASIL D
					UCA04 Vehicle steers too late while following safety path trajectory and lateral movement is required	SG-03 ASIL D	UCA06 Vehicle continue with a stuck value to steer while following safety path trajectory and lateral movement is required	SG-03 ASIL D

STPA Causal Factors

Causal Factors for Unsafe Control Action UCA04: Vehicle steers too late while following safety path trajectory and lateral movement is required

AD Automated Driving PAP Primary Autopilot SAP Secondary Autopilot

🙆 ntinental 🖄

Conclusion

- STPA is a systematic top down approach to eliminate the unsafe control actions that could lead to hazardous states
- STPA drives the earliest design decisions and is therefore a usefull addition to the tools in the ISO26262 concept phase
- System redundancy adds more interactions into the system but will not eliminate the unsafe control actions by itself
- Next steps should consider unsafe interactions of control actions between multiple controllers (Driver, Autopilot 1&2)

Thank you for your attention!

