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Abstract. The Aircraft Recovery Problem (ARP) appears when external events
cause disruptions in a flight schedule. Thus in order to minimize the losses caused
by the externalities, aircraft must be reallocated (rescheduled) in the best possible
way. If uncertain conditions are taken into account the Stochastic Aircraft Recovery
Problem (SARP) arises. The aim of this paper is to develop a suitable approach
based on Constraint Programming paradigm and using simulation to solve this so-
called SARP . The approach solves the problem through the rescheduling of the
flight plan using delays and swaps. The main objective is to restore as much as
possible the original flight schedule, minimizing the total delay. Several tests have
been carried out on medium-sized scenarios to assess the accuracy of the solutions
provided by our approach.
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1. Introduction

Operational disruptions are defined as a deviation from originally planned operations.
The airline industry is notably one of the most affected industries regarding operational
disruptions. The costs associated to them have gained more and more importance with
the increase of fuel costs and the punctuality policies that airlines have been forced to
implement in order to maintain competitiveness [1]. Due to these and other emerging re-
strictions that the aeronautical industry is facing nowadays, the optimization of resources
and time has become an important issue in the aeronautical agenda [2]. Moreover, a study
developed by the airport of Gatwick [3] calculated that 30 % of the delays are caused
by air traffic management (ATM). In addition, a 25 % of them are due to delays in land
services, commonly known as the turnaround process

The Aircraft Recovery Problem (ARP) main objective is to restore the flight sched-
ule as much as possible using the existing aircraft, i.e. minimize the total delay. Intro-
ducing some uncertainty in the values associated to the problem, i.e. flights duration or
delays, the Stochastic Aircraft Recovery Problem (SARP) arises.

In this work we present a novel approach to tackle the SARP that combines opti-
mization and simulation. First, given an original flight schedule and one or more disrup-



tions (e.g. flight delays, airport closure, etc.), the solving approach based on Constraint
Programming (CP) generates a solution through delaying and swapping aircraft to flights
assignments, in order to create a feasible flight plan that minimizes the impact of the de-
lays as much as possible. Such plan considers all flights scheduled within a certain period
of time by a given fleet including the original departure, the expected flight durations,
and the connections between airports.

The simulation approach is used to generate variations of the original scenario ac-
cording to this stochasticity, in order to evaluate the robustness of the solution provided
by the optimization method under uncertain conditions. Recent studies analyse the ro-
bustness of the final re-schedule [4] in contrast with previous airlines priorities of just
minimizing total delays. The main argument is that in networks with a large number
of connecting flights, delays can propagate very rapidly throughout the scenario. This
increases the recovery costs of the airlines and has a larger impact on their profit.

The literature contains several works on different aspects of the ARP. As mentioned,
a recent work by Dunbar et al. [4] is focused on the robustness of the solution by inte-
grating aircraft routing and crew pairing. Lan et al. [5] develop a robust aircraft routing
model to minimize the expected propagated delay along aircraft routes. They use an ap-
proximate delay distribution to model the delay propagation and use a branch-and-bound
technique to solve their MIP. Instead of estimating delay propagation, Wu [6] used a
simulation model to calculate random ground operational delays and airborne delays in
an airline network. Wu [6][7] shows that delays are inherent in airline operations due to
stochastic delay causes.

The article is organized as follows. Section 2 presents the CP formulation. Section
3 introduces the approach developed for the stochastic ARP. In section 4 some tests are
presented. Finally, in Section 5, the conclusions are given and lines for future research
are outlined.

2. Constraint Programming Formulation

The optimization method is based on the Constraint Programming (CP) paradigm [8],
specially suitable for problems regarding scheduling, routing, planning, and resource
configuration. CP is based in three entities: (i) variables, (ii) their corresponding domains,
and (iii) the constraints relating these variables. The main solving techinque is known as
constraint propagation [9]. There are artifices to increase the efficiency of this technique;
one of them is the addition of redundant constraints to further prune the search tree. We
take advantage of this characteristic in our formulation of the ARP, thus modelling the
problem with two sets of variables: predecessors (P) and successors (S). These variables
allow us modelling the same search space from two different perspectives, while the
redundant constraints propagate decisions made in any of the two sets to the other one.
This formulation is inspired on the Vehicle Routing Problem formulation by Kilby and
Shaw [10].

We consider a set of n flights and a fleet of m aircraft. Then, the variables used in
this formulation are:

• Ψ = ψ1...ψn are the flights to be attended;
• A = a1...am are the available aircraft;
• G = g1...gn+2m are the assignment set, with domain G :: [1..m].



It should be noticed that there is one assignation per each flight and two special
assignations per aircraft: the starting and ending airports for the aircraft. Thus, two sub-
sets of G, F and L, are defined as the aircraft departure and arrival airports to ensure the
closure of the cycle:

• F = n+1...n+m is the set of first assignments;
• L = n+m+1...n+2m is the set of last assignments.

Then, the predecessor and successor sets are defined as:

• P = p1...pn+m is the predecessors set, with domain P :: [1..n+m] :: (G−L);
• S = s1...sn+m is the successors set, with domain S :: [1..n,n+m+ 1..n+ 2m] ::

(G−F).

A set of constraints is imposed to relate all the variables and define the problem. The
predecessor and successor variables form a permutation of G and are therefore subject to
the difference constraints (1).

pi 6= p j ∀i, j ∈ G∧ i < j si 6= s j ∀i, j ∈ G∧ i < j (1)

These equations force predecessor and successor sets to contain no repetitions. Thus, one
flight can have one and only one predecessor and successor.

The successor variables are kept consistent with the predecessor variables via the
following coherence constraints:

spi = i ∀i ∈ G−F psi = i ∀i ∈ G−L (2)

Equations (2) connect the concepts successor and predecessor as follows: the for-
mer shows that i is the successor of its predecessor, and the latter indicates that i is the
predecessor of its successor.

Along a set of connected flights, all assignations are performed by the same aircraft.
This is maintained by the following leg constraints:

gi = gpi ∀i ∈ G−F gi = gsi ∀i ∈ G−L (3)

Equations (3) are used to ensure that the aircraft assigned to i is the same as that
assigned to its predecessor and successor.

Other sets of variables are defined to ensure the connections between origin and
destination airports, as well as the times that aircraft are assigned to their flights:

• O = o1...on is the origin airport set;
• D = d1...dn is the destination airport set;
• ∆ = δ1...δn is the duration time list;
• T = t1...tn is the departing times list, indicating the time when the aircraft i de-

parts;
• S = s1...sn is the scheduled times list, indicating the time when the aircraft is

originally scheduled to depart;
• Γ = γ1...γn is the initial delays list, indicating the delays that have disrupted the

system;
• Λ = λ1...λn is the delays list, indicating the accumulated delays of each flight.



The real departure time is calculated given the departure time constraints:

ti ≥ tpi +δpi ∀i ∈ G−F ti ≤ tsi −δi ∀i ∈ G−L (4)

Equations (4) bound the real departure time of an aircraft assigned to the flight i.
This time is, at least, the departure time in the predecessor of i, plus the duration time
from the predecessor to i (δpi ). Equally, this time must be, at most, the departure time in
the successor, minus the duration time from i to its successor (δi ).

The connection between origin and destination airports is done by using the connec-
tivity constraints:

oi = dpi ∀i ∈ G−F di = osi ∀i ∈ G−L (5)

Equations (5) are used to narrow down the combinations of flights. The origin of
flight i must be the destination of its predecessor. In the same way, the destination of
flight i is the origin of its successor.

Equation (6), ensures that the departing time of i is greater than the scheduled time
plus the initial delay.

ti ≥ si + γi ∀i ∈ G−F−L (6)

Equation (7) allows to calculate the total accumulated delay by obtaining the dif-
ference between the real time of departure (ti) and the scheduled time of the departure
(si).

λi = ti− si ∀i ∈ G−F−L (7)

Finally, the objective function (8) to be minimized is defined as the sum of accumu-
lated delays for all flights.

min
n

∑
i=1

λi (8)

3. Methodology

As explained before, the ARP is very unlikely to occur in the deterministic form. As a
lot of tasks have to be done to ensure that an aircraft is ready to depart, many sources
may introduce uncertainty to the system. Therefore, the nature of the problem may be
considered stochastic. The resulting Stochastic ARP (SARP) becomes more challenging
than the original ARP.

In Figure 1 a diagram is introduced to outline the proposed methodology. First, the
stochastic problem is simplified to a deterministic instance by using the average values
of the adjusted probability distributions of the different processes. An initial solution is
generated using the original flight assignment. This solution provides an initial value for
the total delay (the cost function), which is used as an upper bound for the objective func-
tion in the local search performed by the CP approach. A better flight schedule reducing
the total delay is found as the result of this process.
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Figure 1. Methodology flow diagram

This optimized solution is then checked using simulation to verify its robustness: a
set of 20 stochastic instances is generated using the probability distributions for the pro-
cesses. Maintaining the improved flight schedule returned by the CP model, we compute
the total delay for each instance. This way, a single solution is evaluated in 20 differ-
ent scenarios. The results are then analysed in order to determine the level of robustness
of the obtained solution. At this stage, different criteria can be considered to determine
whether a solution is robust or not. First, a solution may be considered to be robust if the
standard deviation of the simulated solutions is proportional to the variation of the used
probabilistic distributions and its expected propagation due to problems size. Second, a
solution may be considered robust if the gap between the average of the simulated solu-
tions and the deterministic solution falls within a tolerance interval. Third, we may define
the criterion as the number of solutions whose gap to the deterministic solution is smaller
than a given value. Finally, operational considerations such as the number of swapped



flights / aircraft assignments may be introduced. In the application case presented in this
work, we use the first criterion to determine the robustness of the obtained solutions.

If the solution is not accepted as a robust one, its objective function value is used
as a lower bound and the optimization/simulation process is repeated. This way a worst
solution may be found but with a better robustness. Otherwise, the solution is accepted
and the algorithm ends.

4. Application

To the best of our knowledge no defined benchmark instances exist neither for the ARP
nor the SARP. For this reason, we defined a test instance composed by a total of 50
flights, 11 aircraft, and 10 airports. In order to simulate a local disruption, we introduce
a delay of 120 minutes to the first 5 flights allocated in the first airport. In addition, some
uncertainty is added to the duration of each flight. We simulate this fact by considering
a normal probability distribution whose mean value is the estimated flight duration. The
standard deviation is set to be 5 % of the flight duration. As no real data was available, a
5 % is chosen to illustrate enough variability during the flight duration. By choosing this
deviation, we introduce some reasonable variation to our system. This permits validating
the obtained results and the robustness of our solutions. According to this variation and
the size of the defined scenario, we consider a solution to be robust if the standard de-
viation obtained from the simulated scenarios is less or equal to 5 % . These tests were
conducted using the ECLiPSe CP platform [11] in an Intel Core i5 2.5 GHz with 4Gb
RAM.

As a first step, we take the mean values of the normal distributions to obtain the
deterministic version of the ARP. The total delay is calculated as the sum of all the delays
present throughout the system. As can be observed in Table 1, applying the CP-based
optimization process allows us to obtain a revised flight schedule for the new scenario,
reducing the total delay in 26.34 %.

Original flight schedule (min) Improved flight schedule (min) Gap(%)
Total delay 2050 1510 -26.34

Table 1. Deterministic results

Table 2 shows the results for the 20 stochastic instances generated using the sim-
ulation approach. For comparison, two obtained solutions are studied: the best solution
found with a total delay of 1510 minutes, and a worse solution with a total delay of 1610
minutes. For each case, the corresponding solutions are reported, as well as the aver-
age and the standard deviation. The total delay is calculated by keeping the same flight
assignation as in the deterministic case. Therefore, the variations in solutions’ value are
given by the deviations in the input data for each scenario, i.e. the variations in flights’
duration. Even though, the first solution gives a tolerable standard deviation according
to the chosen 5 %, the results of a worse solution (1610) are also reported. The purpose
for testing the 1610 solution was to verify the robustness of solutions provided by the
presented methodology. In this case, the best solution (1510) is accepted and returned by
the method, as its standard deviation (4.22 %) falls within the defined tolerance gap (5
%).



Scenario
Total delay (min)

Solution 1510 Solution 1610
1 1616 1662

2 1564 1660

3 1614 1649

4 1599 1645

5 1583 1627

6 1546 1630

7 1502 1560

8 1556 1664

9 1539 1633

10 1526 1602

11 1586 1651

12 1530 1573

13 1479 1538

14 1459 1565

15 1423 1437

16 1523 1621

17 1608 1727

18 1524 1511

19 1639 1640

20 1702 1755

Average 1548.2 1617.5

St. Dev 4.22 % 4.46 %
Table 2. Stochastic results for the 20 simulated scenarios

5. Conclusions

This paper presents a methodology to solve the Stochastic Aircraft Recovery Problem
(SARP). This methodology combines CP and simulation techniques. First, the CP model
is used in a local search process to find an optimized solution. Next, simulation is used to
check if the given solution is robust enough. Thus, the inherent stochasticity of the prob-
lem is naturally introduced in the decision making process. If the so-obtained solution
does not achieve some imposed robustness criteria, it is discarded and a new optimized
solution is generated.

The main contribution of this paper is a methodology combining optimization / sim-
ulation approaches where results are easily propagated between both techniques. The
solutions obtained from the optimization method are easily perturbed and tested in the
simulation scenarios. By applying this approach, significant results are obtained.

Finally, as an active field of research, this methodology is to be tested using real data
scenarios. Moreover, the methodology may be extended to tackle more complex variants
of the problem. For instance, a joint problem combining ARP characteristics with flight
crews scheduling is under consideration.
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